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Abstract. Robotic manipulation of deformable objects is challenging
due to the great variety of materials and shapes. This task is even more
complex when the object is also fragile, and the allowed amount of de-
formation needs to be constrained. For the goal of driving a thin fragile
deformable object to a target 2D position and orientation, we propose a
manipulation method based on executing planar pushing actions on the
object edges with a robotic arm. Firstly, we obtain a probabilistic model
through Gaussian process regression, which represents the time-varying
deformation properties of the system. Then, we exploit the model in the
framework of an Adaptive Bayesian Optimization (ABO) algorithm to
compute the pushing action at each instant. We evaluate our proposal
in simulation.

Keywords: Manipulation of deformable objects, robotic pushing, Bayesian
optimization

1 Introduction

Deformable objects are very common in a number of tasks and processes. Rang-
ing from clothes to food products, this kind of materials have a considerable
impact in the global economy. Automatizing processes that require deformable
object manipulation is interesting for different reasons (process efficiency, work-
ers safety, assistance to people with disabilities, etc.), but it is also technically
challenging [27]. For domestic and industrial manipulation tasks, perception,
modeling and control of these objects are some of the main issues to tackle, and
different solutions have been proposed and evaluated [23], [26].

Particularly, the topic of manipulation of fragile deformable objects is an
open problem that has received increased attention in the last years, with solu-
tions for grasping delicate objects by exploiting the environmental constraints
[25], for cleaning deformable parts with fragile sections [15] and for vision-based
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object-compliant shape control [8], among others. For such fragile materials, the
control actions must be limited and the manipulation strategy must be carefully
designed, so that their integrity is not compromised in the process. Some exam-
ples of deformable fragile objects are fish and meat portions, food dough, unfired
ceramic pieces and plastic parts at high temperatures.

Here, we propose a new method to manipulate thin fragile deformable ob-
jects based on a sequence of planar pushing actions. These actions aim at driving
the object to a specific configuration (position in 2D and orientation around the
vertical axis), while preserving its shape within an admissible range of deforma-
tion. In contrast to the standard prehensile manipulation of rigid or semi-rigid
objects, pushing is less invasive and, therefore, more suitable for manipulating
thin fragile objects that can be damaged when grasped with robotic tools. In
this problem, the interaction forces between the supporting medium and the
object must be taken into account. Besides, the complexity of the problem is
increased by the fact that we consider the mechanical properties of the objects
to be unknown.

Object in the desired 

configuration

Object in the initial 

configuration

Camera

Transparent 

surface

Fig. 1. System overview: A fragile thin deformable object is pushed by a robot manipu-
lator to a desired configuration with compliant-object actions that respect its integrity.
The input information (object contour) to the Adaptive Bayesian Optimization-based
method is provided by a camera under the transparent surface that supports the ob-
ject.

Manipulation of rigid objects by pushing is a mature topic in robotics [24].
A key work is based on Variational Heteroscedastic Gaussian processes to model
planar pushing interaction [4]. An uncalibrated image-based controller is con-
sidered in another study for parking objects by pushing [16]. The problem of
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pushing objects with unknown center of mass is tackled in a recent work by
finding a suitable two-edge-contact configuration [10]. However, the number of
solutions for robotic non-prehensile manipulation of deformable objects is still
limited. Some works in this context include the results of the RoDyMan project,
focused on dynamic non-prehensile manipulation of rigid and deformable objects
with robotic platforms [22]. Modeling the deformation of an object under push-
ing has been addressed by offline learning with integration of visual and force
information [3]. Different studies tackle non-fixed contact manipulation configu-
rations by means of optimization-based methods for contact adjustment [13] and
contact point selection [11]. Recently, a strategy for object rearrangement based
on planar pushing has been analyzed and validated [5]. In comparison with our
method, these works only consider partially and not fully deformable objects.

Our proposed method is based on a Bayesian Optimization algorithm. This
kind of methods are focused on finding the optimum value of an unknown func-
tion, in a small number of iterations. In each iteration of the algorithm, a proba-
bilistic model (typically a Gaussian Process) is updated through Bayesian infer-
ence, with data selected by means of an acquisition function. In contrast to other
alternative methods like Reinforcement Learning, the amount of data needed to
create a behavioral model is much smaller. The pioneer work in [9] solves the
problem of robotic motion planning in environments with deformable objects
by means of Gaussian Process Regression. Safe and robust robotic grasping is
tackled in another study by haptic exploration and unscented Bayesian optimiza-
tion [19]. With respect to the manipulation of deformable objects, a solution has
been proposed based on servo control and a deformation model learned with fast
online Gaussian process regression [12]. Another study considers Bayesian infer-
ence and deep learning for solving real-to-sim problems of deformable objects
manipulation [2]. Other applications of Bayesian optimization include non-rigid
structure from motion [1] and soft landing control of reluctance actuators [17].

The main contribution of our study, in comparison with previous works, is
applying the technique of sequential pushing to fully deformable objects, with
pushing actions that contain the deformation of the object within an admissible
range. In addition, our algorithm leverages Adaptive Bayesian Optimization and
takes into account the temporal evolution of the object, thanks to a probabilistic
model. Then, after every pushing action the object is deformed, and this is
accounted by the learnt policy to drive the object to a planar goal configuration.

2 Manipulation task overview

The manipulation setup is equipped with a robotic arm and consists of a flat
horizontal surface in which a thin fragile deformable object lies (see Fig. 1).
A camera is placed in the environment so that the 2D contour of the object
is detected without occlusions. In this case, the object contour corresponds to
the projection in the horizontal surface along the vertical axis, and it is defined
by the ordered sequence of M contour points Vc = [vc1,vc2, ...,vcM ] ∈ R2×M .
We consider that the state of the object is determined by the contour centroid
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c ∈ R2, the orientation of the contour around the vertical axis θ ∈ [0, 2π) and
the shape of the contour represented as a binary mask γ.

The goal is to perform object-compliant actions that transport and rotate
the object to a goal position. Due to the thin and fragile structure of the object,
it cannot be grasped and lifted, and its deformation must be bounded along the
process. We define three different errors to assess the task completion:

ec = ∥(c− cd)∥/∥cd∥ , (1)

eθ = (θ − θd)/π , (2)

eγ = Σ(γ ⊕ γd)/Σ γd , (3)

where ∥·∥ is the 2-norm operator and the parameters with d subscript refer to the
user-defined target values. The contour centroid is computed as c = 1

MVc1M ,
with 1M being a column vector of M ones. We apply Principal Component
Analysis (PCA) to the set Vb = Vc − c 1⊺

M = USV⊺ ∈ R2×M , and we obtain
the orientation of the contour as θ = atan(V2,1, V1,1), where the subscripts refer
to the corresponding elements of V. Symmetry issues are avoided by checking
the temporal consistency of θ.

Equation (3) represents a ratio, where the numerator corresponds to the
difference in pixels between the current γ and the desired γd shapes of the object.
γ is the binary mask of R(−θ)Vb, where R(−θ) is the 2D rotation matrix of −θ
radians, and γd is the binary mask of the desired contour with centroid at the
origin and whose principal direction is aligned with the x axis. The difference
is obtained as the summation of the non-zero pixels resulting from the boolean
XOR operation (⊕ symbol) between γ and γd. In turn, the denominator is the
sum of non-zero pixels of the desired shape (γd). Note that γd is not necessarily
an exact shape to seek, but a mask in which the deformation of the object must
be contained.

Then, the total task error is

eT = kc ec + kθ |eθ|+ kγ eγ , (4)

where kc, kθ and kγ are positive weights and | · | is the absolute value operator.
Note that eT ≥ 0.

The method we propose for completing the manipulation task consists in
executing a sequence of pushing actions u = (κ, d) via the end-effector of the
arm. Parameter d ∈ [dmin, dmax] stands for the pushing distance, which is always
applied perpendicularly to the direction of the contour segment. κ ∈ [0, 1] is
defined as the object contour ratio. The contour ratio is a fraction of the effective
contour Ve ⊂ Vs, where Vs is the augmented contour with

vsi = vi + do vbi/∥vbi∥ , (5)

where vbi = vi − c and do is a safety offset to take into account the width of
the pushing tool. Therefore, κ represents the position of the effective contour
between the first effective point ve1(κ = 0) and the last point veMe

(κ = 1),
where Me is the number of points of the effective contour. The first and the
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last effective points are selected manually for each object. The pushing actions
configured with these parameters aim at reducing the task error eT over time,
while preserving the integrity of the object.

3 Optimization problem

We can express the manipulation task at the time instant k as the following
optimization problem:

Given Vc, cd, θd, γd, f(x)

minimize
u

ξ = eT (k+1)(f(x))− eTk (6)

subject to: κmin ≤ κ ≤ κmax ,

dmin ≤ d ≤ dmax ,

where x = (u, t) = (κ, d, t) ∈ R3 and f(x) is an unknown function that maps κ
and d with eT , over time. Different physical effects are integrated in f(x). The
ones with greater impact on the development of the task are the deformation
modes of the object and the friction between the object and the manipulation
surface. In general, fragile deformable objects may show deformations that dis-
appear when the acting force is released (elastic) or deformations that remain
afterwards (plastic). Besides, the manipulation actions may create compression,
traction, shear or torsion among other deformation modes. With respect to fric-
tion, we can differentiate between static friction, which happens when the object
is not globally in motion, and dynamic friction, which acts during global motion.

The transition between these modes determines the difference between ac-
tions that induce local motions only (deformations) and the actions that produce
both local and global motions (deformation and displacement). These effects and
their interactions are complex to model, and their variability is high. This is the
reason why obtaining f(x) for each manipulation case seems appropriate. The
method we propose is based on the Adaptive Bayesian Optimization (ABO)
technique [20]. While a standard Bayesian Optimization (BO) approach allows
obtaining the global optimum of an unknown time-invariant function, ABO al-
lows to track the minimum of a time-varying function over time. This method
can be divided in two main steps:

1. Data acquisition. At the beginning of the process, the parameter space (de-
limited by the constraints) is randomly sampled for obtaining an initial
model. Then, the acquisition process modulates to sampling points that raise
the highest probability of improvement.

2. Model update. The model is updated with new data after every sampling.
This allows refining the knowledge about the underlying physics and the
evolution of the system over time.

In the present case, sampling requires pushing and detecting the contour
afterwards. Pushing modifies not only the state of the object, but also its defor-
mation and friction properties, which may vary due to local stiffening, creasing
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and other effects. Then, solving (6) implies finding, at every instant k, the ac-
tion that most decreases the error with respect to the previous instant, and
satisfies the existing constraints. Therefore, the more negative ξ becomes, the
more effective a pushing action will be.

4 Gaussian process regression

The method we propose requires a prior regression model. Under the assumption
that the variability of the unknown model of our system, in space and time, can
be predicted by a Gaussian probability function, we consider a spatiotemporal
Gaussian Process (GP) as the required surrogate model. GPs are likely the most
popular regression models for BO, and they represent the generalization of the
Gaussian probability distribution [21]. This model is specified by a mean function
µ0(x) and a covariance function, or kernel, k(x,x′) as f(x) ∼ GP(µ0, k). We
assume that µ0 = 0 for convenience, and we consider the kernel to be stationary,
separable and of the form

k(x,x′) = ks(u,u
′) · kt(t, t′) , (7)

where ks and kt are the spatial and temporal kernel functions, respectively [20].
We consider kernel functions of the Matérn 52 form kM52(x,x

′):

kM52 =
∑
i

(
σ2
f +

√
5∥xi − x′

i∥2
ρi

+
5∥xi − x′

i∥22
3ρ2i

exp

(
−
√
5∥xi − x′

i∥2
ρi

))
, (8)

where σ2
f is the characteristic variance and ρi is the length scale of every dimen-

sion (with i ≡ κ, d, t).
For updating the model with the sets of S measurements Y = [ξ1, ξ2, ..., ξS ] ∈

R1×S and X = [x⊺
1 ,x

⊺
2 , ...,x

⊺
S ] ∈ R3×S we must compute the posterior Gaussian

distribution

f |X,Y,x = N (µ, σ) , (9)

where µ and the variance σ2 are computed with the Sherman-Morrison-Woodbury
formula as

µ = k⊺K−1Y , (10)

σ2 = k(x,x)− kK−1k . (11)

K ∈ RS×S is the covariance matrix with Kij = k(Xi,Xj) and k is defined with
ki = k(Xi,x), ∀i, j ≤ S.

As mentioned before, we want to track the minimum of ξ over time. For
efficiently getting a good estimate of this value, the variability of the solution
search space must be represented well enough in the initial model. We apply the
Latin Hypercube Sampling (LHS) technique [18], that allows covering the search
domain in a near-random manner with S0 initial samples. Algorithm 1 reports
the main steps involved in getting the initial model.
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Algorithm 1 Get initial model f(x)

Require: S0,Vc, cd, θd,γd

1: U← LHS(S0) # set of random pushing parameters
2: S ← 0
3: while S < S0 do
4: u← U(S)
5: Vc,X,Y ← applyPushingAction(u)
6: S ← S + 1
7: end while
8: return f(x)← updateModel(X,Y),Vc

5 Acquisition function

One of the key aspects of ABO is that it allows tracking the minimum of f(x)
through successive trials or acquisitions where the value the search criterion
yields is maximum. The acquisition step, in our case, should consider a balance
between exploration and exploitation. Once the algorithm finds a suitable push-
ing action, this action should be exploited until its effectiveness decreases. In
that moment, the algorithm should explore the solution search space to find a
better pushing action candidate.

The dynamic acquisition function we consider is based on the Lower Confi-
dence Bound (LCB) [7]:

LCB(x) = µ(x)− wσ(x) , (12)

where w ≥ 0 is a constant that regulates the confidence level. According to this
function, the lower the LCB value the more promising a sample is. We look
for a minimum LCB by optimizing the function under the problem constraints
κmin, κmax, dmin and dmax. The Adam optimization algorithm [14] provides a
suitable solution by means of exponential moving averages of the gradient and
the squared gradient of the function. At every iteration of the method the search
space boundaries are checked, and the evaluated point is saturated to the limits
in case the constraints are violated. After a user-defined number of iterations,
the best solution is selected as the candidate pushing action for the next time
step.

It is worth mentioning that, in contrast to other applications of ABO, we do
not optimize the time step in which we sample/push the system. This is due to
the fact that the temporal evolution of the system is conditioned to the pushing
step. Then, we are interested in applying the pushing actions as soon as possible,
so that the operation time is minimized. We show the complete structure of our
pushing method in Algorithm 2.

6 Simulation results

We evaluate our method by means of two different simulation scenarios in the Py-
bullet environment, a module in Python language focused on sim-to-real transfer
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Fig. 2. The first two rows represent the sequence of four bottom-view snapshots, for
two scenarios: a rectangular deformable object (first row) and a non-regular shaped
deformable object (second row). The snapshots are acquired at k = {0, 10, 18, 53} and
k = {0, 10, 26, 39}, respectively. The deformable object, in blue, is pushed towards the
target rectangle, in yellow. Note that the red dot, which indicates the next pushing
point, is separated from the contour to compensate for the gripper width. The last two
rows depict the errors and actions plots, for the first test scenario (top row) and second
test scenario (bottom row).
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Algorithm 2 Find optimal pushing action u at time t.

Require: X,Y,Vc, cd, θd,γd, µ, σ
1: c← 1/M Vc1M

2: θ ← PCA(Vc)
3: γ ← binaryMask(Vc)
4: ec ← ∥(c− cd)∥/∥cd∥
5: eθ ← (θ − θd)/π
6: eγ ← Σ(γ ⊕ γd)/Σ γd

7: while (ec ≥ estopc ) & (eθ ≥ estopθ ) & (eγ ≥ estopγ ) do
8: κmin, κmax, dmin, dmax ← constAdaption(eT )
9: u← acquisition(µ, σ)
10: Vc,X,Y ← applyPushingAction(u)
11: f(x)← updateModel(X,Y)
12: c← 1/M Vc1M

13: θ ← PCA(Vc)
14: γ ← binaryMask(Vc)
15: eT ← computeTotalError(c, θ,γ)
16: end while
17: return eT ,X,Y,Vc

[6]. In the first test, we consider a 0.2× 0.1× 0.02 [m] (length × width × depth)
flat rectangular deformable object, modelled with the finite element method
(FEM). The object is placed over a transparent table, and it is detected by a
virtual camera beneath the table. We extract the contour of the object by means
of the OpenCV library, by color thresholding in the HSV space. The manipula-
tor model is a Kuka iiwa arm attached to the table at a certain distance from
the object. The goal of the task is to push the object to a target position while
preserving its initial shape and orientation. For obtaining the initial model, we
apply the space filling technique LHS with S0 = 10 initial samples. In addi-
tion, the learning process is accelerated by delimiting the solution search space
according to the most effective observed pushing actions.

The first row of Figure 2 shows four snapshots of the first experiment, at
the initial time and after the 10th, 18th and 53th pushing actions. In turn, the
third row depicts the evolution of the task errors (left), and the evolution of the
pushing parameters and the cost function along the task (right). In the latter,
the left axis corresponds to the values of the pushing parameters κ and d, while
the right axis indicates the values of ξ . Note that after the first 10 pushes, an
initial model is learnt, and the position error decreases fast. Then, the rotation
error decreases and the position and shape error start to increase. However, once
the model learns to push under the new state of the object, the errors start to
decrease until they reach the stop values. With respect to the pushing actions,
we can see that the system exploits those pushing actions that reduce eT with
respect to the previous instant until they stop being effective. Then, the system
iterates to find the pushing action that is most likely going to reduce the error
at the current state of the system.
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In the second scenario, we place a non-regular shaped object of 0.13 [m]
width, 0.2 [m] length and 0.01 [m] thickness over the table, with different de-
formation properties than the previous one. These properties are set in order to
simulate the behaviour of a piece of meat. We control the elasticity by adjusting
the Lamé parameters of the model, and the friction between the table and the
object by increasing the mass of the model. The task consists in pushing the
object to a target place, by maintaining a compact configuration and preserv-
ing the initial orientation. For maintaining a compact configuration, we define a
rectangular goal shape with aspect ratio close to 1. Note that γd can be seen as
a deformation constraint for the algorithm. We set S0 = 10, and due to the fact
that longer pushes are required to move this object, we increase dmin and dmax

with respect to the previous case.

The second row of Figure 2 shows the bottom view of the system at four
different pushing instants, and the fourth row depicts the evolution of the task
errors, the pushing actions and the cost function. In this example, the error
decreases fast at the beginning when the initial model is learnt. After that, the
errors continue to decrease with some small oscillations, and finally they reach
the stop values. As for the pushing parameters and the cost function values, the
same behavior than in the first scenario is shown: the system exploits the actions
that decrease ξ until they stop being effective, and then it explores to find new
parameters.

7 Conclusion

Manipulating deformable objects is a challenging task for robotic systems due
to the large variety of deformations that can appear in the object, which de-
mand specific techniques which may be dependent on the material properties.
Unlike rigid objects, any force applied to a deformable object cannot only trans-
late/rotate it, but also alters its shape. Despite the challenges, it is a crucial skill
required for robots to manipulate a wide variety of household and industrial ob-
jects.

In this work, an algorithm based on Bayesian optimization is proposed to
achieve robotic pushing of thin fragile deformable objects. The proposed ap-
proach has multiple advantages. First, the temporal evolution of the object is
considered and a policy is learnt to perform a series of pushes on the object
to move it from one location to another on a plane. By doing so, the shape of
the deformable object is also actively controlled in order to maintain it within
an admissible range. Second, in comparison to modeling techniques such as fi-
nite element methods, where a precise knowledge of the material property is
required, our approach relies on a probabilistic model that is computed in few
trial iterations and updated over time to make better predictions. Similarly, in
comparison to approaches based on deep learning, the proposed probabilistic
model is generic and works well for unknown deformable objects without the
need of large new training data.
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The approach is validated in simulation with objects of different shapes and
properties. As future work, the pushing action would be further extended with a
grasping action, where a thin deformable object is pushed to the edge of the table
and a grasp utilizing the edge as environmental constraint can be executed [25].
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